Широтно-импульсная модуляция (ШИМ). Класс с Шумы и нелинейные искажения

01.11.2023

ШИМ контроллер. Синхронизация. Обратная связь. Задание частоты. (10+)

Широтно-импульсная модуляция - ШИМ контроллер. Частота. Усилитель ошибки

Резистор и конденсатор, задающие частоту работы контроллера (RT, CT) . Контроллер работает на определенной частоте. Импульсы следуют с этой частотой. Контроллер меняет длительность импульсов, но не частоту. Это значит, что чем короче импульс, тем длиннее пауза и наоборот, а частота следования остается постоянной. Конденсатор, подключенный между CT и общим проводом, и резистор, подключенный между RT и общим проводом, задают частоту работы контроллера.

Импульсы синхронизации (CLOCK) . Иногда необходимо заставить работать несколько контроллеров синхронно. Тогда к одному контроллеру (ведущему) подключают частотозадающие конденсатор и резистор. На ножке CLOCK ведущего контроллера появляются короткие импульсы напряжения. Эти импульсы подаются на ножки CLOCK других контроллеров (ведомых). Ножки RT ведомых контроллеров соединяются с VREF этих контроллеров, а ножки CT - с общим проводом.

Напряжение для сравнения (RAMP) . На эту ножку нужно подать пилообразное напряжение. В момент возникновения импульса синхронизации на выходе контроллера появляется открывающее управляющее напряжение. Далее, как только напряжение на RAMP превышает напряжение на выходе усилителя ошибки на определенную величину, на выходе возникает закрывающее напряжение. Так что импульс длится от момента синхронизационного импульса до момента превышения напряжения на RAMP над напряжением выхода усилителя ошибки. Этим и достигается ШИМ. В классической схеме на RAMP подается напряжение с CT. Там как раз отличная пила. Есть и другие варианты включения.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости , чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи. сообщений.

Какая минимальная длинна импульса возможна в шим контроллерах (минимальный коэф фициент заполнения)? На практике получается что, к примеру, sg3525 запускается с минимальной шириной примерно 1 микросекунда. Есть ли методика расчета этого параметра? Очень актуально при разработке импульсных блоков питания с регулировкой напряжения от нуля вольт.

Фотореле. Автоматическое управление освещением. Световое реле. Автомат...
Автоматическое управление освещением. Включение вручную или при снижении освещен...

Металлоискатель самодельный. Сделать, собрать самому, своими руками. С...
Схема металлоискателя с высокой разрешающей способностью. Описание сборки и нала...

Полумостовой импульсный стабилизированный преобразователь напряжения, ...
Полумостовой преобразователь напряжения сети. Схема, онлайн расчет. Форма для вы...


Традиционные аудиоусилители классов А, В и АВ для мобильных устройств с автономным питанием уже давно перестали устраивать разработчиков из-за их низкого КПД и, как следствие, высокого расхода энергии батареи или аккумулятора. Усилители класса D имеют гораздо более высокий КПД, поэтому именно они наилучшим образом удовлетворяют предъявленным требованиям к современной портативной технике. Эти усилители применяются и в стационарной технике (телевизоры, персональные компьютеры, домашние или автомобильные стереосистемы и даже мощная усилительная техника для театров и концертных залов) благодаря уменьшению габаритов, веса и цены при сопоставимых параметрах качества с приборами предыдущих поколений классов А, В и АВ. Достижения полупроводниковой технологии последних лет позволили компании Texas Instruments разработать микросхемы для создания высококачественных усилителей звуковой частоты класса D с максимальной выходной мощностью от единиц до нескольких сотен Вт.

Рассеиваемая мощность усилителя, работающего в классе D, существенно меньше, чем у аналогичных приборов класса АВ, работающих в тех же режимах. Это проиллюстрировано на рис. 1 (в качестве примера взята микросхема Texas Instruments TPA2012D2, предназначенная для усилителей портативной техники).

Рис. 1.

Из рисунка 1 хорошо видно, что при одинаковой выходной мощности усилитель класса D имеет потери мощности в несколько раз меньшие по сравнению с аналогичными усилителями класса АВ во всем диапазоне выходных мощностей. Наибольший выигрыш получается при средней выходной мощности. Именно в этом режиме чаще всего и используется аппаратура для воспроизведения звука. Отмеченные свойства дополняет рис. 2, иллюстрирующий зависимости КПД от выходной мощности этих же усилителей при режимах измерения, аналогичных рис. 1. При малой и средней мощностях КПД усилителя класса D в два-три раза выше, чем у усилителя класса АВ.

Рис. 2.

Сравнение эффективности и рассеиваемой мощности для усилителей с очень низкой выходной мощностью может оказаться не в пользу усилителей класса D из-за относительно высокой мощности высокочастотного модулятора, преобразующего аналоговый сигнал в прямоугольные импульсы с широтно-импульсной модуляцией (ШИМ). По этой причине линейные усилители класса АВ при очень низких выходных мощностях иногда оказываются предпочтительнее класса D. Принцип работы простейшего усилителя класса D без обратной связи поясняет рисунок 3.

Рис. 3.

Входной сигнал предварительного усилителя модулируется треугольными колебаниями для преобразования в широтно-модулированные импульсы, которые усиливаются выходным каскадом, работающим в ключевом режиме. Далее LC-фильтр низких частот интегрирует импульсы разной длительности и срезает высокочастотные составляющие спектра, оставляя только выделенный сигнал звуковой частоты. Осциллограммы процесса ШИМ для усилителя класса D, выполненного по мостовой схеме, приведены на рис. 4. Модуляция в усилителях класса D может осуществляться разными способами, но наиболее распространена именно ШИМ.

Рис. 4.

Звуковой сигнал сравнивается с сигналом пилообразной или треугольной формы фиксированной частоты. Первый усилитель на рисунке 3 необходим для предварительного усиления и смещения сигнала до нужного уровня. Второй усилитель и генератор треугольного напряжения образуют модулятор ШИМ. На рисунке 4 длительность широтно-модулированных импульсов пропорциональна уровню входного аналогового сигнала. Мостовой схеме необходимы импульсы ШИМ противоположной полярности для управления другим плечом моста. На рисунках 3 и 4 показаны упрощенные варианты схем. В реальных схемах усилителей класса D обязательно вводятся формирователи времени паузы между импульсами для исключения одновременного включения двух выходных транзисторов и устранения сквозных токов. Частота модуляции и среза низкочастотного фильтра обычно выбирается в несколько раз больше верхней граничной частоты пропускания усилителя. К выбору элементов LC-фильтра необходимо относиться очень внимательно. Этому вопросу уделяется особое внимание в документации производителя и руководствах по применению.

Texas Instruments выпускает микросхемы для создания усилителей класса D низкой, средней и высокой мощности. Параметры для усилителей класса D низкой мощности приведены на рис. 5 и в табл. 1.

Рис. 5.

Таблица 1. Микросхемы Texas Instruments для усилителей класса D c низкой и средней выходной мощностью (аналоговый вход)

Наименование Описание Стерео/ моно Pвых, Вт Rнагр. (min), Ом Напряжение
питания, B
Half Power THD+N* (%),
F = 1 кГц
PSSR** дБ Корпус(а)
(min) (max)
TPA2017D2 SmartGain, AGC/DRC, GPIO интерфейс Стерео 2,8 4 2,5 5,5 0,2 80 QFN-20
TPA2000D2 усилитель средней мощности Стерео 2,5 3 4,5 5,5 0,05 77 TSSOP-24
TPA2000D4 усилитель для стереотелефонов Стерео 2,5 4 3,7 5,5 0,1 70 TSSOP-32
TPA2012D2 усилитель в корпусе WCSP 2 x 2 мм Стерео 2,1 4 2,5 5,5 0,2 75 WCSP-16, QFN-20
TPA2016D2 SmartGain, AGC/DRC, I2C интерфейс Стерео 1,7 8 2,5 5,5 0,2 80 WCSP-16
TPA2001D2 усилитель низкой мощности Стерео 1,25 8 4,5 5,5 0,08 77 TSSOP-24
TPA2100P1 для пьзокерамического излучателя Моно 19 Vpp 1,5 мкФ (пьезо) 2,5 5,5 0,2 90 WCSP-16
TPA2035D1 дифференциальный вход, 1,5 х 1,5 мм Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9
TPA2032/3/4D1 дифференциальный вход, фикс. усиление Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9
TPA2013D1 Моно 2,7 4 1,8 5,5 0,2 95 WCSP-16, QFN-20
TPA2036D1 защита от КЗ с автовосстановлением Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2031D1 аналог TPA2010D1, но с плавным стартом Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2010D1 дифференциальный вход;1,45 х 1,45 мм Моно 2,5 4 2,5 5,5 0,2 75 WCSP-9
TPA2018D1 SmartGain AGC/DRC, I2C интерфейс Моно 1,7 8 2,5 5,55 0,2 80 WCSP
TPA2014D1 встроенный повышающий DC/DC-преобр. Моно 1,5 8 2,5 5,5 0,1 91 WCSP-16, QFN-20
TPA2006D1 дифференциальный вход Моно 1,45 8 2,5 5,5 0,2 75 QFN-8
TPA2005D1 дифференциальный вход Моно 1,4 8 2,5 5,5 0,2 75 MSOP-8, QFN-8, BGA-15
*Half Power THD+N - (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц). **PSSR - Power Supply
Rejection Ratio - коэффициент подавления помех по цепям питания

В первую очередь эти микросхемы предназначены для встраивания в мобильные устройства. Подавляющее большинство таких усилителей расчитано на напряжение питания от 2,5 до 5,5 В, но микросхема одноканального усилителя TPA2013D1 имеет расширенный диапазон напряжений питания от 1,8 до 5,5 В благодаря встроенному повышающему DC/DC-преобразователю (Boosted DC/DC ). Это позволило обеспечить постоянство выходной мощности при всем диапазоне рабочих напряжений питания по сравнению с обычными усилителями класса D, что наглядно проиллюстрировано на рис. 6.

Рис. 6.

При выходной мощности около 1,5 Вт в диапазоне напряжений питания от 2,3 до 4,8 В характеристика находится в пределах ±0,1 Вт. Большинство обычных усилителей этого класса имеют практически линейную зависимость максимальной выходной мощности от напряжения питания. Преимущество усилителей со встроенным повышающим DC/DC-преобразователем - возможность работы при гораздо более низком напряжении питания батареи (или при ее более глубоком разряде), что повышает степень использования автономного источника питания.

Структурная схема микросхем TPA2013D1 и TPA2014D1 со встроенным повышающим DC/DC-конвертером показана на рис. 7.

Рис. 7.

В микросхемах предусмотрена защита от нежелательных переключений при коммутации повышающего DC/DC-преобразователя. Встроенный стабилизатор обеспечивает стабильность характеристик в широком диапазоне напряжений питания. При необходимости выход повышающего DC/DC-преобразователя можно использовать для питания маломощных дополнительных схем портативного устройства. Если внимательно посмотреть на параметр PSSR (коэффициент подавления помех по цепям питания) в табл. 1, то бросается в глаза, что именно усилители со встроенными повышающими DC/DC имеют существенно лучшие значения этого параметра (91…95 дБ) по сравнению с остальными усилителями этого класса.

Среди усилителей с низкой и средней выходной мощностью есть и специализированный для работы на пьезокерамический излучатель с допустимой емкостью до 1,5 мкФ. При этом размах выходного напряжения на емкостной нагрузке достигает 19 В (от пика до пика) при минимально допустимом напряжении питания всего 2,5 В. Необходимо обратить внимание, что параметр (THD + N), характеризующий суммарные гармонические искажения вместе с шумовыми составляющими, измеряется на частоте 1 кГц при половине мощности от допустимого максимального значения.

На рис. 8 приведен навигатор для выбора микросхем усилителей класса D высокой мощности (отсчет высокой мощности для этого класса усилителей Texas Instruments начинает с 3 Вт).

Рис. 8.

Основные параметры этих микросхем сведены в табл. 2. Некоторые из микросхем, приведенных на рис. 8 и в табл. 2, относятся только к анонсированной продукции, поэтому возможность поставки образцов необходимо проверять на сайте производителя.

Таблица 2. Микросхемы Texas Instruments для усилителей класса D c высокой выходной мощностью (аналоговый вход)

Наименование Описание Pвых Вт Rнагр.
(min), Ом
Напряжение
питания, B
Half Power THD+N* (%),
F = 1 кГц
PSSR**, дБ Корпус(а)
(min) (max)
TAS5630 300 Вт усилитель (стерео)
с ОС
300 TBD*** TBD 50 TBD 80 QFP-64
TAS5615 150 Вт усилитель (стерео)
с ОС
150 TBD TBD 50 TBD 80 QFP-64
TAS5412 100 2 6 24 0,04 75 HTQFP-64
TAS5422 усилитель (стерео) с симметричным входом 100 2 6 24 0,04 75 HTQFP-64
TAS5414A усилитель (квадро) с несимметричным входом 45 2 8 22 0,04 75 SSOP-36, HTQFP-64
TAS5424A усилитель (квадро) с симметричным входом 45 2 8 22 0,04 75 SSOP-44
TPA3106D1 усилитель (моно) со входом синхронизации 40 4 10 26 0,2 70 HLQFP-32
TPA3123D2 усилитель (стерео) с несимметричным входом 25 4 10 30 0,08 60 HTSSOP-24
TPA3100D2 усилитель (стерео) 20 Вт 20 4 10 26 0,1 80 HTQFP-48, QFN-48
TPA3001D1 усилитель (моно) 20 Вт 20 4 8 18 0,06 73 HTSSOP-24
TPA3110D2 усилитель (стерео) с ограничением мощности 15 4 8 26 <0,1 70 TSSOP-28
TPA3122D2 15 4 10 30 <0,15 60 PDIP-20
TPA3107D2 усилитель (стерео) 15 Вт 15 6 10 26 0,08 70 HTQFP-64
TPA3124D2 усилитель (стерео) 15 Вт
с функцией Mute****
15 4 10 26 0,04 60 TSSOP-24
TPA3121D2 усилитель (стерео) с несимметричным входом 15 4 10 26 0,04 60 TSSOP-24
TPA3004D2 12 4 8,5 18 0,1 80 HTQFP-48
TPA3125D2 усилитель (стерео) в корпусе DIP-20 10 4 10 26 0,15 60 PDIP-20
TPA3101D2 усилитель (стерео) 10 Вт 10 4 10 26 0,1 80 HTQFP-48, QFN-48
TPA3111D1 усилитель (моно) с ограничением мощности 10 4 8 26 <0,1 70 TSSOP-28
TPA3002D2 усилитель (стерео) c регулировкой громкости 9 8 8,5 14 0,06 80 HTQFP-48
TPA3007D2 усилитель (стерео) 6.5 Вт 6,5 8 8 18 0,2 73 TSSOP-24
TPA3009D2 усилитель (стерео) c регулировкой громкости 6 8 8,5 14 0,045 80 HTQFP-48
TPA3005D2 усилитель (стерео) 6 Вт 6 8 8 18 0,1 80 HTQFP-48
TPA3003D2 усилитель (стерео) c регулировкой громкости 3 8 8,5 14 0,2 80 TQFP-48
TPA2008D2 усилитель (стерео) c регулировкой громкости 3 3 4,5 5,5 0,05 70 HTSSOP-24
*Half Power THD+N - (нелинейные искажения + шум) при половине мощности от макс. значения (измерено для частоты 1 кГц) **PSSR - Power Supply Rejection Ratio - коэффициент подавления помех по цепям питания ***TBD - To Be Documented - данные будут указаны производителем позднее ****Mute - приглушение звука

На основе микросхем Texas Instruments можно спроектировать усилитель класса D с выходной мощностью до 300 Вт при максимальном напряжении питания до 50 В.

Большой интерес для разработчиков могут представлять новые двухканальные микросхемы для усилителей этого класса TPA3122D2 и TPA3125D2 в корпусе DIP20.

Рис. 9.

Рис. 10.

Этот корпус удобен для монтажа и макетирования по сравнению с миниатюрными корпусами BGA с шариковыми выводами. Схема включения этих стереоусилителей отличается простотой и приведена на рис. 11. Синим цветом выделены параметры, соответствующие TPA3125D2 (мощность до 10 Вт), красным цветом - TPA3122D2 (мощность до 15 Вт).

Рис. 11.

Микросхемы имеют два входа регулировки усиления (четыре уровня), а также возможность отключения (Shutdown) и приглушения звука (Mute). На рис. 11 показан самый распространенный вариант включения двухканального усилителя в режиме SE (Single Ended Output - нагрузка подключается к каждому каналу - режим «стерео»). Для существенного увеличения выходной мощности рассматриваемых микросхем можно из двух каналов одной микросхемы создать одноканальный мостовой усилитель (схема BTL - Bridge Tied Load - подключение нагрузки к мостовой схеме). Принципиальные схемы включения микросхем TPA3125D и TPA3122D для мостового варианта усилителя класса D приведены в документации производителя для этих усилителей. На рис. 9 и 10 показаны зависимости выходной мощности от напряжения питания при одинаковых условиях измерения для схем в режиме «стерео» (SE) и для варианта мостового включения (схема BTL).

Измерение максимальной выходной мощности оценивается при конкретном значении суммы всех гармонических искажений и шумовых составляющих (THD + N). При переходе к мостовой схеме включения на одинаковых напряжениях питания, сопротивлении нагрузки и суммарных искажениях сигнала, выходная мощность возрастает в несколько раз. Поэтому в мощных усилителях обычно используют именно мостовую схему включения. Всего одна микросхема в корпусе DIP20 при таком подключении позволяет создать усилитель с максимальной выходной мощностью около 50 Вт при напряжении питания 30 В.

Шумы и нелинейные искажения

Основная информация о звуковом сигнале кодируется шириной импульсов на выходе модулятора. Необходимость введения задержки на величину паузы становится причиной нелинейных искажений, пропорциональных отклонению от точной длительности импульса модуляции. Сильное влияние на шумы оказывает коэффициент ослабления помех от источника питания PSSR. Из-за малого сопротивления шумы источника питания могут напрямую передаваться в громкоговоритель. ФНЧ срезает высокочастотные составляющие, но пропускает низкочастотные шумы. Для качественного звучания следует выбирать микросхемы с высоким значением коэффициента ослабления помех от источника питания. Эффективное решение перечисленных проблем - введение глубокой обратной связи, как это делается во многих линейных усилителях. Обратная связь с входа ФНЧ сильно повышает PSSR и ослабляет суммарные искажения и шумы, появляющиеся до LC-фильтра. Искажения в самом фильтре можно уменьшить включением громкоговорителя в цепь ОС. В грамотно спроектированных усилителях класса D с замкнутой ОС реально достижим суммарный коэффициент нелинейных искажений менее 0,01%.

Основные выводы

Все больше новых аудиоустройств создается на основе экономичных и эффективных усилителей класса D. Многолетний опыт и новые технологии компании Texas Instruments позволяют ей уверенно чувствовать себя на этом рынке с высокой конкуренцией. Усилители класса D позволяют, повышая эффективность, в несколько раз снизить габариты за счет исключения или значительного уменьшения размеров радиаторов в мощных схемах. Требуется менее мощный источник питания, что дополнительно снижает цену усилительного прибора. Для многих рассмотренных в статье микросхем Texas Instruments выпускает демонстрационные платы. Ознакомиться с решениями для построения аудиосистем можно на сайте производителя в разделе www.ti.com/audio , а по системам управления питанием - в разделе www.power.ti.com .

Получение технической информации, заказ образцов, поставка — e-mail:

Коэффициент полезного действия является основным параметром для усилителей мощности звуковой частоты. Особенно это важно для портативной аппаратуры, такой как радиоприемники или сотовые телефоны. Усилители с высоким к.п.д. применяются и в стационарных устройствах, таких как компьютеры или телевизоры. Усилители класса C позволяет получить достаточно большие значения к.п.д. но их невозможно использовать для усиления звуковых сигналов.

Основным параметром, определяющим потребление энергии выходным усилительным каскадом, является мощность, рассеиваемая на его транзисторах. При этом мощность не будет рассеиваться в двух случаях:

  1. ток через транзистор при ненулевом напряжении равен нулю;
  2. напряжение на транзисторе при ненулевом токе равно нулю.

Эти условия выполняются при работе транзистора в ключевом режиме. Первое условие будет выполнено, если транзистор полностью закрыть (режим отсечки). Второе условие будет выполнено, если транзистор полностью открыть (режим насыщения). Так работают транзисторы в цифровых микросхемах, например КМОП логики.

Но ведь в этом случае амплитуда сигнала на выходе будет иметь только два уровня. Для того чтобы можно было получить амплитуду сигнала, соответствующую входной, на выходе усилителя звука, в ключевом режиме используется широтно-импульсная модуляция — ШИМ.

Широтно-импульсная модуляция реализуется при помощи компаратора, на входы которого подаются полезный сигнал и пилообразное напряжение. В результате ширина импульса на его выходе будет пропорциональна амплитуде полезного сигнала. Данный процесс иллюстрируется рисунком 1.


Рисунок 1. Процесс формирования ШИМ

Как видно из рисунка 1, средний уровень сигнала зависит от ширины импульсов. Чем она меньше — тем меньше будет средний уровень сигнала, чем больше — тем больше. В спектре широтно-импульсной модуляции присутствует исходный низкочастотный звуковой сигнал, поэтому обратное преобразование ШИМ в аналоговый сигнал осуществляется любым фильтром низкой частоты. Достаточно отфильтровать высокочастотные составляющие двухуровневого сигнала и усиленный первоначальный сигнал можно подавать на громкоговоритель. Спектр широтно-импульсной модуляции синусоидального сигнала приведен на рисунке 2.


Рисунок 2. Спектр сигнала ШИМ

Так как мощность на выходе усилителя мощности обычно составляет значение от единиц до сотен ватт, то обычно применяются LC фильтры. Задача фильтра заключается в подавлении частоты пилообразного сигнала, модулированного полезным сигналом и его гармоник. Для того, чтобы можно было применить простейший фильтр второго порядка, частоту пилообразного сигнала выбирают в пределах двух мегагерц. Так как частота модулирующего сигнала превышает верхнюю частоту звукового спектра в 100 раз, то фильтр второго порядка, состоящий из индуктивности и конденсатора, способен подавить мешающие сигналы на 80 дБ (при соответствующем конструктивном исполнении).

Усилителя низкой частоты, работающего в режиме класса D, приведена на рисунке 3



Рисунок 3. Типовая структурная схема усилителя класса D

Данная схема состоит из входного усилителя, обеспечивающего требуемое входное сопротивление, компаратора напряжения, на второй вход которого подается пилообразное напряжение и выходного каскада, собранного на комплементарных полевых транзисторах. Именно эти транзисторы и обеспечивают необходимую выходную мощность. Их быстродействие определяет к.п.д. усилителя. Для оценки коэффициента полезного действия можно воспользоваться зависимостью рассеиваемой мощности от выходной мощности. На рисунке 4 приведены характеристики микросхем усилителя класса D фирмы Texas Instruments TPA2012D2.


Рисунок 4. Сравнение рассеиваемой мощности усилителей класса AB и D

Микросхемы подобного класса предназначены для применения в портативной аппаратуре. В таблице 1 приведены некоторые из таких микросхем. Обратите внимание на очень низкие этих микросхем.

Наименование Описание Стерео/моно Pвых, Вт Rнагр. (min), Ом Напряжение питания, B Нелин. искаж. на мощн. P/2 THD+N* (%), f=1кГц Коэфф. подавл. помех по цепям питания дБ Корпус
(min) (max)
TPA2017D2 SmartGain, AGC/DRC, GPIO интерфейс Стерео 2,8 4 2,5 5,5 0,2 80 QFN-20
TPA2000D2 усилитель средней мощности Стерео 2,5 3 4,5 5,5 0,05 77 TSSOP-24
TPA2000D4 усилитель для стерео телефонов Стерео 2,5 4 3,7 5,5 0,1 70 TSSOP-32
TPA2012D2 усилитель в корпусе WCSP 2 x 2 мм Стерео 2,1 4 2,5 5,5 0,2 75 WCSP-16, QFN-20
TPA2016D2 SmartGain, AGC/DRC, I2C интерфейс Стерео 1,7 8 2,5 5,5 0,2 80 WCSP-16
TPA2001D2 усилитель низкой мощности Стерео 1,25 8 4,5 5,5 0,08 77 TSSOP-24
TPA2100P1 для пьзокерам. излучателя Моно 19 Vpp 1,5 мкФ (пьезо) 2,5 5,5 0,2 90 WCSP-16
TPA2035D1 дифф. вход, 1,5 х 1,5 мм Моно 2,75 4 2,5 5,5 0,2 75 WCSP-9

Несколько другой подход для построения усилителей класса D использует фирма Analog devices. В ее микросхемах вместо ШИМ модулятора используется сигма-дельта модулятор. Это позволяет поднять внутреннюю частоту до такого значения, что внешний фильтр низкой частоты не требуется. Его функции выполняет динамик. Внутренняя схема подобной микросхемы приведена на рисунке 5.



Рисунок 5. Внутренняя схема микросхемы SSM2317

В настоящее время выпускается достаточно большое количество микросхем усилителей класса D большой мощности. В качестве примера можно назвать разработки фирм MPS (Monolithic Power Systems) и Texas Instruments

Наименование Описание Pвых, Вт Rнагр. (min), Ом Напряжение питания, B Нелинейные искажения на половинной мощности THD+N* (%), f=1кГц Коэффициент подавления помех по цепям питания дБ Корпус
(min) (max)
TAS5630B 300 Вт усилитель (стерео) с ОС 400 2 25 52,5 0,03 80 QFP-64, PSOP-44
TAS5615A 160 Вт усилитель (стерео) с ОС 300 2 18 38 0,03 80 QFP-64, PSOP-44
MP7720 20 Вт усилитель (моно) 20 4 9,5 24 0,04 60 SOIC-8
MP7781 80 Вт усилитель 80 4 18 38 0,1 60 SOIC-24

Следует отметить, что подобные схемы практически не требуют громоздких радиаторов, рассеивающих избыточное тепло. На рисунке 6 приведена типовая принципиальная схема усилителя звуковых частот класса D.



Рисунок 6. Принципиальная схема звукового усилителя мощности класса D на микросхеме МР7720

В данной схеме резисторы R4 и R1 определяют глубину отрицательной обратной связи, которая влияет на коэффициент усиления усилителя и его нелинейные искажения. Резисторы R3 и R2 задают режим работы на входе микросхемы по постоянному току (половина питания). Диоды D1 и D2 защищают выходной каскад от перенапряжения. Фильтр, выделяющий из ШИМ звуковой сигнал собран на индуктивности L1 и конденсаторе C8. Емкости C1 и C9 являются разделительными.

Литература:

Вместе со статьей "Усилитель класса D" читают:


http://сайт/Sxemoteh/RejRab/


http://сайт/Sxemoteh/RejRab/A/


http://сайт/Sxemoteh/RejRab/Berg/


http://сайт/Sxemoteh/RejRab/B/


обзавёлся очень сильной дискуссией очень грамотных специалистов, которые..
..которые разжевали всё до такой степени, что описали всю суть практически до уровня электронов в проводниках.
Выражаю им ОГРОМНУЮ и искреннюю благодарность и признательность.

=========================


Итак.
Хочешь что-то — сделай это САМ...
В интернете, действительно, есть всё — надо только найти.
Найти и..
..и систематизировать всё в одном месте. Т.к. в интернете вся эта информация присутсвует, но она размазана по разным местам по маленьким кусочкам -- в одном месте упоминается одно, в другом другое, а общей картины нет. НО.. Но если собрать все эти кусочки в одном месте (файле) и затем отредактировать в единый информационный поток, то
, то можно собрать из них полную картину (как паззл/puzzle) ,
что я, собственно, и собираюсь сделать.

Итак. забив в поиске "полностью цифровой усилитель" сразу получаю практически полноценный ответ:

"полностью цифровой усилитель" ссылка 1 = http://www.diyaudio.ru/forum/index.php?topic=4078.0
цитата
:
Полностью цифровой усилитель
« : 06 Августа 2014 , 11:47:55 »

Мучаю на макете полностью цифровой усилитель на техасском чипсете.
Модулятор TAS5548, выходной каскад TAS5612LA.
Вход многоканальный I2S,
источник - компьютер,
USB интерфейс - Фламенко.
Управление модулятором пока от Arduino.
В качестве РГ - энкодер.
Питание всего 12В, выходная микруля греется не сильно, даже не стал ставить радиатор.
Мощности для акустики 84 Дб - за глаза.
""""""""""""""""" конец цитаты """"""""""""""""""

===================================

Первое что бросается в глаза -- это, а что такое «I2S»

"""""""""""""" Цитата """""""""""""""
Универсальное устройство на sc4392
предназначено для
приема аудиоданньіх по SPDIF и преобразованию в i2s
и коммутацию нескольких источников цифровьіх аудиоданньіх.
На борту
4 входа:
3 SPDIF из них один разведен под TOSLink,
1 кв.шина, максимальная частота семплирования 192КГц
2 вьіхода:
Кв.шина и повторяющий ее SPDIF вьіход.
"""""""""""""" конец цитаты """""""""

Дальше я сохраню в этом же файле свою переписку 2015 года с человеком, который.. казался мне большим докой в цифровых усилителях.
"Меня зовут Костяной Сергей Александрович. Сейчас живу в глубинке в Воронежской области. "

"""""""""""""" Цитата """""""""""""""

Привет!

Иногда пишут как IIS

На вход TAS5548 нужен i2s.

"""""""""""""" конец цитаты """""""""


Переписка целиком
Привет!

Честно говоря у меня сейчас мало времени.

С первым девайсом:

Из всей начинки, там позного: Блок питания, модулятор, и выходной каскад.

5.1 - 6 каналов. Тебе нужно не i2s, а i6s:)

Это чудо подключаем к модулятору. Модулятором можно управлять через USB-i2C переходник.
Ну конечно нужен будет некий софт, если нужно что-то крутить на аппаратном уровне.
Лучше все делать софтом, на компе.

Звуковая карта не нужна. В ней есть смысл, если есть аппаратная доработка звука или мегакрутой ЦАП для аналогового усилителя.

В Tomson можно убрать АЦП, и прилепить вместо него более простой i2s интерфейс например CM6631A
Каналы крутить через встроенное MCU.

По поводу вывода i2s из компа. В теории это можно сделать. Даже из встроенного кодека.
Но неужели встроенный в мост контроллер звука такой хороший?
Опять же CM6631A или XMOS - более правильное направление.

Вообще я смысла не вижу, разве что, при наличии Creative x-fi с аппаратным улучшайзером...

Непосредственный вывод i2s очень не дальнобойный. Максимум 30 см до модулятора, или начнутся сбои.
Лучше посадить чип модулятора прямо над старым ЦАП. PWM можно уже будет удлинить на большие расстояния, без особых проблем.

Но процы сейчас такие мощные, что и софтовый аудиоплагин можно юзать.
Опять же CM6631A или XMOS - более правильное направление, чем ковырять звуковухи тем более на материнке.
Например это https://www.minidsp.com/products/usb-audio-interface/usbstreamer

По поводу ручек.
Аналоговая ручка ни о чем не говорит. Сигнал с регулятора может быть оцифрован MCU и даваться по i2c в модулятор.
Может не по шине, а на управляемый аттенюатор. В общем нужно разбирать и смотреть.

По поводу TOSHIBA SD-530 E - да, там может быть крутой ЦАП в маркетинговых целях. Скорей всего в него заводится i2s.

Чтобы достать от туда i2s нужен переходник на парафазную линию через специальный драйвер. Потом в RJ-45.
Потом в приемном устройстве RJ-45. Приемник парафазного сигнала. Потом получаем дискретный i2s. Его можно подать в ЦАП или модулятор.

Это все очень не просто, не благодарно и не выгодно. У меня мало времени, чтобы бороться с буржуйским маркетингом.

Никаких крутых DVD и блюреев. Только HTPC с мощным процом, чтобы 4К крутил, с запасом на обработку звука и прочих шлюх.

Звуковые карты не нужны. Нужен крутой аудио-интерфейс с достаточным количеством каналов.

Например это https://www.minidsp.com/products/usb-audio-interface/usbstreamer
10 x OUT multi-channel USB audio interface (8 x I2S)
Можно сделать отдельно многополоску и настраивать все программно, прямо на компе. И без маркетинговых кровопийц.

Вопросы?

В письме от 8 июня 2016 01:44:14 Вы написали:
> ПРИВЕТствую!!! о Сергей:)
>
> снова нуждаюсь в помощи профессионала.
>
> Нашёл тут DVD домашний кинотеатр в одном - Tomson (модель уточню)
> суть в том, что выход не в виде линейных выходов 5.1
> а на выходе 5.1 цифровой усилитель - 5.1 выходы сразу на колонки включая даже ПАССИВНЫЙ сабвуфер.
>
> Мы когда-то хотели заказывать в Китае такую плату. так она денег стоит.... не копеечная. А тут она же самая, видимо.
>
>
> Но по законам запланированного устаревания у модели НЕТ входов.
> т.е.
> лазер от времени стал читать плохо, часто заикаится. Да и время болванок "ушло безвозвратно".
>
> А использовать ВНУТРЕННИЙ ПОТЕНЦИАЛ = полноценный цифровой усилитель 5.1 - НЕТ возможности.
>
> Сделан 2.0 АНАЛОГОВЫЙ вход. и тот звучит не плохо. Но это же сколько преобразований
> сперва из цифры в аналог, что бы подать на аналоговый же вход, после которого снова АЦП что бы подать на цифровой усилитель цифру.... 3 преобразования из исходной ЦИФРЫ в ту же ЦИФРУ....
>
> Кому я чего объясняю:)) - ты сам мне это объяснял в прошлом письме.
>
>
>
> Вопрос.
>
> Расскажи как вывести из компютера -- из звуковой карты этот самый I2S ?
>
>
> Сколько бы ты взял (рублей) за такую работу?! -- вот только как бы тебе переслать аппарат...(ну это, в принципе, решаемо)
>
>
>
> Есть эта же модель Тоmson , но более старшая, у неё уже сделан хотя бы ОПТИЧЕСКИЙ вход.
>
> секундочку у меня же есть документация
>
> THOMSON DPL913VD.pdf
> http://vk.com/doc5542158_437445096
>
> это кажется тот что у меня
>
>
> А вот более старшая модель 950:
> http://vk.com/doc5542158_437451143
>
>
> а вот тот преобразователь который....
> http://vk.com/doc5542158_437451125
>
> на который видимо и надо заводить I2S со звуковой карты.
>
>
> Если освоить это, то можно делать бизнес,
> т.к. народ сейчас тупо ВЫКИДЫВАЕТ такие аппараты
> т.к. викидывают и все диски... а он кроме как с диска иначе... ну разве что СТЕРЕО усилитель... но людям НЕ надо.
> я нашёл на помойке....
>
> ===========================
> ===========================
>
>
> Вопрос 2
>
> Подарил мне друг систему
>
> Cambrige DTT 2500
> фотка = http://vk.com/photo5542158_416539186
>
> по Coaxial он имеет внутренний AC3 Dolby Digital деккодер. К сожаления нет DTS -- вот уроды....
> DTS раскодировать нынче не проблема - и я прикупил себе топовую Creative ZxR
>
> но эти "умные люди" предвидели это и кроме ОТСУТСВИЯ DTS
> они ещё предусмотрели и ОТСУТСВИЕ 5.1 входов.
> Есть только вход 4.0 , при том что усилитель 5.1
>
> "висит груша - нельзя скушать"
>
> есть усилитель 5.1 уже ВТОРОЙ, но я не могу им воспользоваться.
>
>
> но на этом DTT2500
> есть АНАЛОГОВАЯ ручка регулировки уровня громкости ЦЕНТРАЛЬНОГО канала
> при том что нет для него аналогового входа
>
> и это наводит меня на мысль, что
> раз ручка АНАЛОГОВАЯ,
> то она может регулировать лишь АНАЛОГОВЫЙ сигнал,
> т.е. можно подпаться к ней и подавать внешний вход ЦЕНТРАЛЬНЫЙ прямо напрямую на неё...
>
> Но там же ещё где-то схема обрезания БАСОВ, т.к. колоночки лишь СЧ/ВЧ, весь бас обрезается в САб.
> а тут уже скорее всего ОБРЕЗАНЫЙ аналоговый сигнал.
>
> т.е. завести то сигнал я может так и смогу, но...
> но таким образом я рискую перегрузить колоночку и усилитель НЕ обрезанными БАСАМИ.
>
> Колончки в силу своего микро размера ОЧЕНЬ НРАВЯТСЯ
> я расставил их вокруг себя
> в непосредственной близости
> и абсолютно симметрично
> чем достиг коллосальный эффект от симметрии.
> все 5.1 эффекты передаются максимально 100% (ну с поправкой на обрезку басов в единый саб.)
>
> но вот я не могу подать центральный канал....
>
> и кажется даже если подам напрямую на регулятор,
> то я должен буду как-то сам куда-то заранее обрезать с его БАС.
>
> А ведь аппарат Cambrige -- и звучит... ну мне для дома хватает.
>
> Как бы мне научиться подавать центральный канал.
> ведь по SpDif Coaxial он понимает все 5.1 - но там по ЦИФРЕ...
> а тут мне надо подать АНАЛОГОВЫЕ 5.1
>
> =============
> =============
> =============
>
>
> и третья задача.
>
> есть DVD Player TOSHIBA SD-530 E
>
> http://www.stereo-journal.ru/149491-toshiba_sd_530e.html
>
>
> на борту которого написано, что в нём установлен некий 192 kHz 24 bit ЦАП/DAC
> опять же хотелось бы его использовать в качестве СТЕРЕО ЦАП
>
> сам я врядли смогу сделать - я математик. я резистор от транзистора с трудом отличу.
>
> А вот за задачу с Tomson я готов заплатить, ОБОСНОВАНУЮ цену.
>
> ну или и вправду попробовать найти какие провода надо искать (по каким признакам?)
> по идее надо соединить I2S со звуковой карты
>
> видимо с его внутреннего ЛАЗЕРА идёт та же самая I2S , как и на звуковой карте.
> но эти стандарты к сожалению не имеют обукновения выводиться наружу,
> хотя с появлением ЦИФРОВЫХ усилителей
> приходит именно их пора.
>
>
> =========================
> =========================
> =========================
>
>
>
>
>
> >Пятница, 6 ноября 2015, 0:36 +03:00 от Сергей Костяной :
> >
> >Привет!
> >Выбирай http://kostyanoysa.ru/?p=154
> >
> >Честному цифровому усилку нужен цифровой звук! i2s!
> >https://www.sparkfun.com/datasheets/BreakoutBoards/I2SBUS.pdf
> >Иногда пишут как IIS
> >
> >Эти последовательные i2s данные могут быть преобразованы в аналог мага-дорогой микросхемой ЦАП, и усилены мегадорогим усилком.
> >Либо!
> >Эти данные поступают в модулятор (например TAS5548), который переведет их в точную длительность открытия ключевых транзисторов, а звук в аналоговый преобразуется уже на выходном фильтре.
> >
> >В первом случае мы получаем шумы и искажения ЦАП, а потом их еще и усиливаем, с посторонними помехами, да и теряем на КПД АВ усилителя.
> >Во втором случае получаем идеальный выходной сигнал. Качество звучания во много зависит от согласования выходного фильтра с АС.
> >
> >Так чтобы обойтись без аналога, надо иметь звуковую карту с цифровым выходом или SPDIF который потом опят преобразуется в I2s
> >SPDIF и I2s - цифровые интерфейсы но протоколы разные.
> >На вход TAS5548 нужен i2s.
> >На выходе TAS5548 поучаем ШИМ и подаем на выходной чип. Если хочешь - можно взять не чип, а драйвер затвора (типа IR2110) и мощные полевые транзисторы (типа IRFP4321). Будет "дубово"!
> >
> >В письме от 6 ноября 2015 00:11:39 Вы написали:
> >> ПРИВЕТствую Сергей.
> >>
> >> Хочу разобраться в одной звуко.. инженерной задачке
> >> уверен тебе будет интересно,
> >> а быть может, ты "сто лет в обед" знаешь об этом.
> >>
> >>

Это работа транзистора и усилителя при маленькой амплитуде напряжения запирания ниже, чем напряжение смещения. В этом случае амплитуда звукового сигнала меньше, чем напряжение смещения. В таком состоянии транзистор проводит только верхнюю часть положительной полуволны, что сильно искажает сигнал. Поэтому в аудио усилителях, этот класс не применяется. Такой режим работы транзисторов имеет высокий КПД (около 85%).

Режим работы Класс D - это усилители сигнала с широтно - импульсной модуляцией (ШИМ) и с частотно - импульсной (ЧИМ), в которых звуковой аналоговый сигнал преобразуется в цифровую форму, а в выходном каскаде происходит обратное преобразование.

В первом случае ширина синтезированных импульсных сигналов пропорциональна амплитуде входного (аналог) сигнала, во втором - изменяемой величиной является частота импульсов. В любом варианте при изготовлении усилителя мощности класса "D" получаем высокий коэффициент нелинейных искажений, обусловленный дополнительными процессами конвертации усиливаемого сигнала.

Для того, чтобы усилитель мощности перевести в класс "D" необходимо создать ключевой режим работы выходных транзисторов - замыкать и размыкать их. Для этого, на базу (затвор) транзистора подается ШИМ-сигнал обработанный периодической последовательностью прямоугольных импульсов (прямоугольный сигнал). Этот прямоугольный сигнал проходя через транзистор, отпирает и запирает его. В результате импульсного процесса (на короткое время) создаётся рабочая точка выходных транзисторов. Поэтому ток через транзисторы не потечёт если нет сигнала, это вызывает искажения звука свойственные классу "В".

Известно, что многозадачные электронные процессы и скорость переключения транзисторов не проходят мгновенно, это изменяет форму сигнала и увеличивает длину пути его прохождения. К тому же, интермодуляционные искажения звука в усилителях ШИМ имеют прямую зависимость, от частоты модуляции к частоте усиливаемого сигнала, что ограничивает их использование в звуковом диапазоне.

Класс "D" имеет одно неоспоримое преимущество высокий КПД - 90%.
Усилитель для сабвуфера - вот реальное применение класса "D" в аудио.
ШИМ-сигнал применяется для записи формата аудиодисков - SACD. Но на практике всплывают существенные недоработки этого нового формата.

Широтно-импульсная модуляция - это такой способ управления прибором, когда путем регулировки длительности импульса, по отношению к его периоду, достигают нужного среднего значения, которое меньше амплитудного.

Например: есть источник питания напряжением 100 вольт, и нагревательный элемент рабочим сопротивлением 10 Ом. Если подключить прибор напрямую к источнику, то получится выделение тепла мощностью 1000 Ватт, и так будет происходить постоянно, пока прибор не будет отключен от источника. Но что, если нужно получить только 500 Ватт, или, скажем, 200 Ватт, имея все тот же источник и все ту же нагрузку. Здесь на помощь как раз и может придти широтно-импульсная модуляция, или сокращенно ШИМ. Можно между источником и приемником поставить некий управляемый выключатель, который будет то подключать нагрузку к источнику, то отключать ее, причем происходить это будет так, чтобы длительность включения была равна длительности выключения, и так нужно повторять много раз, тогда нагрузка будет запитана только в течение половины всего рабочего времени, и мы получим, как в нашем примере, не 1000 Ватт тепла, а 500 Ватт, как и было нужно. Если теперь длительность включения сделать в пять раз меньше периода импульса, (сумма длительности включения и длительности выключения в каждом цикле - это период импульса) то и средняя мощность нагрузки будет в пять раз меньше, то есть 200 Ватт. Это весьма грубый пример, дающий общее представление о принципе.

Аналогичным образом происходит управление элементами электронных схем, где посредством специальных микросхем - ШИМ-контроллеров, задается необходимый режим широтно-импульсной модуляции для управления силовыми ключами, примером такого настраиваемого ШИМ-контроллера может послужить широко распространенная на рынке радиодеталей микросхема TL494.

© omutsu.ru, 2024
Компьютерные подсказки - Оmutsu